鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Friday, June 6, 2025, By Kwami Maranga
Share
College of Engineering and Computer SciencefacultygrantNational Science Foundationresearch
A person in a suit stands behind a complex arrangement of scientific or technical equipment on a table. The setup includes metal rods, lenses, and electronic components, suggesting a laboratory or research environment.

Pankaj K. Jha in the Quantum Technology Laboratory (Photo by Alex Dunbar)

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count many photons rapidly, have few false counts, and provide precise timing. However, most of these detectors operate only at very low temperatures.

Pankaj K. Jha, an assistant professor in the Department of Electrical Engineering and Computer Science in the , has received a grant from the National Science Foundation to develop single-photon detectors using iron-based superconductors that can operate at higher temperatures. The single-photon detectors he is developing will make these devices smaller, easier to access and more scalable.

“The generation, manipulation and detection of single photons lies at the heart of optical quantum technologies. Losing a photon means a loss of information, whether that information is encoded in a photonic qubit or represents an image of a distant satellite,” Jha says.

These high-temperature SNSPDs will also advance the field of quantum technology, enabling photon-starved deep-space imaging, on-chip quantum photonics and optical quantum computing, as well as applications in biomedical research. The development of these single-photon detectors supports the goals of the National Quantum Initiative Act of 2018 and the CHIPS and Science Act of 2022, both of which aim to promote the advancement of quantum technologies.

The project will also focus on enhancing science education and training for the future workforce, offering hands-on research opportunities in quantum technology to students from K-12 through undergraduate levels.

  • Author

Kwami Maranga

  • Recent
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us 鶹Ƶ Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • 鶹ƵStage Concludes 2024-25 Season With ‘The National Pastime’
    Wednesday, June 4, 2025, By Joanna Penalva

More In STEM

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us 鶹Ƶ Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.