鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

The Building Blocks of Future Smart Materials

Wednesday, September 25, 2024, By News Staff
Share
BioInspiredCollege of Arts and SciencesDepartment of Physicsfacultyresearch

How do cells take the shape they do and perform their functions? The enzymes and molecules that make them up are not themselves living—and yet they are able to adapt to their environment and circumstances, come together and interact, and ultimately, create life. How exactly all of that happens involves some very big questions, the answers to which will be crucial in paving the way for new biotechnologies and other advancements.

The Alfred P. Sloan Foundation, a private, nonprofit grantmaking organization, started its to begin to answer some of them. The program’s stated goal is “To sharpen our scientific understanding of the physical principles and mechanisms that distinguish living systems from inanimate matter, and to explore the conditions under which physical principles and mechanisms guide the complexification of matter towards life.”

To that end, the program awarded (left) and (right), professors in the in the and members of the BioInspired Institute, a three-year grant to explore what they’ve described as a fundamental unanswered question about the functionality of cells and the energy and entropy landscape of cell interiors.

Two women smile while posing for headshots as part of a composite photo.

Jennifer Ross (left) and Jennifer Schwarz, professors in the Department of Physics, received a three-year grant from the Alfred P. Sloan Foundation’s Matter to Life program.

“There is a lack of quantitative understanding of the principles governing the non-equilibrium control knobs inside the cell,” Ross and Schwarz explained in their proposal. “Without this knowledge, we will never understand how cells work, or how we can replicate them in synthetic materials systems.”

They’ve chosen to focus their work on one very particular aspect of the biology of cells, the concentrations of protein molecules within them known as protein condensates, and specifically their liquid-liquid phase separation, which they describe as the “killer app” for the sculpting of energy and entropy in the cell.

“Liquid-liquid phase separation is when two liquids separate, like oil and water,” Ross says. “The proteins separate out [into droplets] and make what we think of as membrane-less organelles. We’re interested in how both energy-using systems and entropy-controlling systems can help to shape those organelles.”

They’re hoping to gain an understanding of how cells self-organize without a “manager”—in this case, a membrane to act as a physical containment system—as well as how they react and adapt to their environment.

“This droplet formation is so sensitive to temperature and its surroundings,” says Schwarz. “The cell knows, ‘A ha!’ The temperature is increasing, so the environment is slightly different. So…I’m going to adapt.”

Ross is serving as principal investigator, and with graduate student assistance, will be performing reconstitution experiments to explore these processes, while co-principal investigator Schwarz and her team will be delving into the theoretical side of the science using predictive simulations. The three-year grant will also fund a paid undergraduate and two local high school students through summer programs.

The hope is that a better understanding of cell behavior at this level could ultimately lead to breakthroughs in the development of smart synthetic materials. “Imagine a road-paving material that could identify when a pothole develops and heal itself,” Ross says.

It’s just one example of countless possibilities for learning from biological systems.

Story by Laura Wallis

  • Author

News Staff

  • Recent
  • 鶹ƵUniversity 2025-26 Budget to Include Significant Expansion of Student Financial Aid
    Wednesday, May 21, 2025, By News Staff
  • University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy
    Wednesday, May 21, 2025, By News Staff
  • Engaged Humanities Network Community Showcase Spotlights Collaborative Work
    Wednesday, May 21, 2025, By Dan Bernardi
  • Students Engaged in Research and Assessment
    Tuesday, May 20, 2025, By News Staff
  • 鶹ƵViews Summer 2025
    Monday, May 19, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.