鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

How Climate Warming Could Disrupt a Deep-Rooted Relationship

Tuesday, September 26, 2023, By Dan Bernardi
Share
College of Arts and SciencesDepartment of BiologyfacultyResearch and Creative
mushroom in forest

Amanita muscaria, an ectomycorrhizal fungus, is shown from the B4WARMED experiment. These types of fungi play an important role in forest health and may be in danger under current levels of climate warming. (Credit: Louis Mielke)

Children are taught to leave wild mushrooms alone because of their potential to be poisonous. But trees on the other hand depend on fungi for their well-being. Look no further than ectomycorrhizal fungi, which are organisms that colonize the roots of many tree species where the boreal ecosystem (zone encompassing Earth’s northernmost forests) and the temperate ecosystem (zone between the tropical and boreal regions) meet. This area features a mix of boreal trees, including needle-leaved evergreens and temperate tree species, including maple and oak.

Just like a healthy human relationship, trees and fungi work well together because they help one another. When the ectomycorrhizal fungi attach themselves to tree roots, they acquire carbon in the form of sugars from their tree hosts and in turn provide the trees with important nutrients like nitrogen and phosphorous. It’s an important symbiotic relationship that drives ecosystem function and resilience.

But as climate change and global warming cause higher temperatures and amplified drought, little is known about how these important fungi will respond. Additionally, there are lingering questions about how climate warming will impact the underground threads—known as ectomycorrhizal networks—formed by fungi that connects trees and facilitates the transfer of water, nitrogen and other minerals.

To investigate this issue, a research team from 鶹ƵUniversity and the University of Minnesota conducted a climate change experiment where they exposed boreal and temperate tree species to warming and drought treatments to better understand how fungi and their tree hosts respond to environmental changes.

The study, led by , assistant professor of biology in the College of Arts and Sciences, was recently published in the journal . Their findings revealed that the combined effects of warming and water stress will likely result in major disturbances of ectomycorrhizal networks and may harm forest resilience and function.

The team conducted their work at a long-term climate change experiment called (Boreal Forest Warming at an Ecotone in Danger) in Minnesota. The experiment features plots where both boreal and temperate tree species have been planted and exposed to warming and drought treatments. This allows researchers to explore how the ectomycorrhizal fungi and the networks they form with their tree hosts respond to environmental stressors.

trees in forest with infrared lamps

The B4WARMED experiment features forest plots warmed with infrared lamps and soil heating cables allowing researchers to study the effects of climate warming. (Credit: Louis Mielke)

Fernandez, whose research aims to understand processes involving plant, microbial and ecosystem ecology, says their study revealed that composition of ectomycorrhizal fungal species changes dramatically with climate change. Specifically, they saw a shift from species commonly found in mature forests that have high biomass mycelium (the thread-like body of the fungus that explores the soil and that is likely important for network formation) toward low biomass species that are generally found in highly disturbed ecosystems.

“There is a supported hypothesis that these low biomass species probably do not provide the host much benefit in terms of nutrition compared to high biomass species,” says Fernandez. “We found that the networks formed by these fungi that ‘connect’ the trees shifted from relatively complex and well-connected networks to ones that are simpler with less connections.”

The authors say these shifts were significantly related to the performance of the tree hosts and their ability to convert carbon dioxide into oxygen and sugars through photosynthesis. “Climate change is reducing the amount of carbon the trees fix and likely has cascading effects on how much carbon they can provide to their ectomycorrhizal fungi,” continues Fernandez. “This is likely causing a shift toward low biomass species, resulting in the breakdown of networks between trees.”

The research team believes this to be the first study examining the response of ectomycorrhizal networks to climate change and their results should generate new research focusing on other ecosystems. Building on this work, they say the next step will be to link the changes in ectomycorrhizal networks to ecosystem level processes such as nutrient and carbon cycling to better understand how resilient they are to changing climate.

  • Author

Dan Bernardi

  • Recent
  • 鶹ƵStage Hosts Inaugural Julie Lutz New Play Festival
    Wednesday, May 28, 2025, By News Staff
  • Timur Hammond’s ‘Placing Islam’ Receives Journal’s Honorable Mention
    Tuesday, May 27, 2025, By News Staff
  • Expert Available to Discuss DOD Acceptance of Qatari Jet
    Thursday, May 22, 2025, By Vanessa Marquette
  • 鶹ƵUniversity 2025-26 Budget to Include Significant Expansion of Student Financial Aid
    Wednesday, May 21, 2025, By News Staff
  • Light Work Opens New Exhibitions
    Wednesday, May 21, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.