鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

鶹ƵIntensifies Search for New ‘Ghostly’ Particles

Wednesday, January 2, 2019, By Rob Enslin
Share
College of Arts and SciencesfacultyResearch and CreativeSTEM
graphic

An artist’s conception of a stream of neutrinos hitting Earth.

Physicists in the College of Arts and Sciences (A&S) are playing an important role in a multinational neutrino experiment that could lead to major breakthroughs in the study of the universe.

, associate professor of physics, oversees a group of researchers in A&S studying neutrinos—tiny, elusive particles that hold clues about the origin of the universe. His group has led the U.S. effort to build two major components for an experiment at the Department of Energy’s , a high-energy particle physics laboratory near Chicago.

The components have been shipped to Fermilab, where they await installation into the Short-Baseline Near Detector (SBND), one of three particle detectors in the Short-Baseline Neutrino (SBN) program.

“Unlocking the properties of neutrinos may explain how the universe works and why matter exists at all,” Soderberg says. “The technology we develop to perform our research could benefit areas such as homeland security, industry and workforce development, to name a few.”

head shot

Mitch Soderberg

With the SBND project, Soderberg’s group makes important contributions to SBN detectors, having previously helped build components at 鶹Ƶfor the MicroBooNE detector. The SBN program focuses on neutrino oscillation—the process by which neutrinos change flavors, or types, as they hurtle through space and matter at essentially the speed of light.

The Standard Model, which explains how fundamental particles interact with one another, posits that neutrinos occur in three flavors. SBN is searching for evidence of a fourth flavor, called sterile neutrinos.

Soderbeg hopes confirming the existence of these infinitesimally small, sterile particles will help him and other scientists answer questions about the universe that the Standard Model cannot.

“While really big questions, such as ‘Why is there more matter than antimatter in the universe?,’ are driven more by intellectual curiosity than practical application, they stretch our understanding of the way the universe functions,” he says. “Perhaps along the way we will devise new technologies that have applications beyond the realm of particle physics.”

Eric Schiff, professor and chair of physics at Syracuse, is excited about the research, saying the existence of “ghostly” sterile neutrinos might explain phenomena such as dark matter—invisible material that makes up 25 percent of the universe, but does not emit light or energy.

“Every particle physicist on Earth would love to be part of the team that does an experiment with results beyond the Standard Model. If found, sterile neutrinos would be just this type of experiment,” he adds.

  • Author

Rob Enslin

  • Recent
  • Student Veteran Anthony Ruscitto Honored as a Tillman Scholar
    Friday, July 18, 2025, By John Boccacino
  • Bandier Students Explore Latin America’s Music Industry
    Thursday, July 17, 2025, By Keith Kobland
  • Architecture Students’ Project Selected for Royal Academy Exhibition
    Thursday, July 17, 2025, By Julie Sharkey
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.