鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A New Way to Count Qubits

Monday, September 24, 2018, By Rob Enslin
Share
College of Arts and SciencesPhysicsResearch and Creative

Physicist Britton Plourde part of interinstitutional team revolutionizing quantum computing

Researchers at 鶹ƵUniversity, working with collaborators at the University of Wisconsin (UW)-Madison, have developed a new technique for measuring the state of quantum bits, or qubits, in a quantum computer.

Their findings are the subject of an article in magazine (American Association for the Advancement of Science, 2018), which elaborates on the experimental efforts involved with creating such a technique.

Britton Plourde in his lab at 鶹ƵUniversity

Britton Plourde in his lab at 鶹ƵUniversity.

The Plourde Group—led by , professor of physics in the College of Arts and Sciences (A&S)—specializes in the fabrication of superconducting devices and their measurement at low temperatures.

Much of their work involves qubits, which are systems that follow the strange laws of quantum mechanics. These laws enable qubits to exist in superpositions of their two states (zero and one), in contrast to digital bits in conventional computers that exist in a single state.

Plourde says that superposition, when combined with entanglement (“another counterintuitive aspect of quantum mechanics”), leads to the possibility of quantum algorithms with myriad applications.

“These algorithms can tackle certain problems that are impossible to solve on today’s most powerful supercomputers,” he explains. “Potential areas impacted by quantum information processing include pharmaceutical development, materials science and cryptography.”

Intensive, ongoing industrial-scale efforts by teams at and have recently led to quantum processors with approximately 50 qubits. These qubits consist of superconducting microwave circuits cooled to temperatures near absolute zero.

Building a quantum computer powerful enough to tackle important problems, however, will require at least several hundreds of qubits—likely many more, Plourde says.

The current state-of-the-art approach to measuring qubits involves low-noise cryogenic amplifiers and substantial room-temperature microwave hardware and electronics, all of which are difficult to scale up to significantly larger qubit arrays. The approach outlined in Science takes a different tack.

“We focus on detecting microwave photons,” says Plourde, also editor in chief of IEEE Transactions on Applied Superconductivity (Institute of Electrical and Electronics Engineers). “Our approach replaces the need for a cryogenic amplifier and could be extended, in a straightforward way, toward eliminating much of the required room-temperature hardware, as well.”

Plourde says the technique co-developed at SU and UW-Madison could eventually allow for scaling to quantum processors with millions of qubits. This process is the subject of a previous article by Plourde and his collaborators in (IOP Publishing, 2018).

An A&S faculty member since 2005, Plourde is a recipient of the IBM Faculty Award and the National Science Foundation’s CAREER Award. He earned a Ph.D. in physics at the University of Illinois at Urbana-Champaign and completed a postdoctoral research fellowship at the University of California, Berkeley.

  • Author

Rob Enslin

  • Recent
  • 鶹ƵUniversity Libraries’ Information Literacy Scholars Produce Information Literacy Collab Journal
    Thursday, May 29, 2025, By Cristina Hatem
  • Trip to Atlanta Gives Falk Students ‘Real-World’ Opportunities and Connections
    Thursday, May 29, 2025, By Matt Michael
  • 鶹ƵPride on Display: Limited-Edition Poster Supports Future Generations
    Thursday, May 29, 2025, By News Staff
  • Maxwell Advisory Board Welcomes New Leadership
    Thursday, May 29, 2025, By Jessica Youngman
  • 鶹ƵStage Hosts Inaugural Julie Lutz New Play Festival
    Wednesday, May 28, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.