鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Awarded $1.2 Million NIH Grant to Enhance Protein Detection

Tuesday, September 11, 2018, By Rob Enslin
Share
BioInspiredCollege of Arts and SciencesPhysicsResearch and Creative

Professor Liviu Movileanu develops biosensors to identify proteins in leukemia, cancer

Liviu Movileanu

Liviu Movileanu

A physicist in the College of Arts and Sciences is using a major grant from the (NIH) to support ongoing research into protein detection.

, professor of physics, is the recipient of a four-year, $1.2 million Research Project Grant (R01) from NIH’s  (NIGMS). The award supports the development of highly sensitive biosensors to identify proteins in aggressive lymphocytic leukemia and various cancers.

The project involves researchers from 鶹ƵUniversity and SUNY Upstate Medical University, the latter of whom are led by , associate professor of biochemistry and molecular biology.

“Our mission is to design, create and optimize novel biophysical tools that detect tiny amounts of biological molecules,” says Movileanu, a member of the Biophysics and Biomaterials research group in the Department of Physics. “We will devise protein-based detectors that benefit molecular biomedical diagnostics.”

Biomedical diagnostics is a rapidly evolving field involving the screening, detection, diagnosis, prognosis and monitoring of disease at various stages of development.

This work involves physics measurements, device engineering principles and other biophysical approaches that enable scientists to observe mechanistic processes at the single-molecule level.

Movileanu credits the Human Genome Project for providing new ways to identify proteins that play critical regulatory roles in cells. Studying how and why proteins interact with one another is part of a burgeoning area called interactomics.

“This work impacts our fundamental understanding of disease cause and its progression,” says Movileanu, who came to 鶹Ƶin 2004, after a postdoctoral stint at Texas A&M University. “If we know how individual parts of a cell function, we can then figure out why a cell deviates from normal functionality toward a tumor-like, oncogenic state.”

A 3-D illustration of cancer cells (Courtesy of Design_Cells/Shutterstock.com)

A 3-D illustration of cancer cells (Courtesy of Design_Cells/Shutterstock.com)

Movileanu uses nanopore technology to identify and validate proteins. This involves sending an electric current across an artificially engineered hole in a cell membrane called a nanopore. When individual proteins move near or through a nanopore, the current changes in intensity.

“A nanopore is a robust, proteinaceous scaffold that can be modified at an atomic level and integrated into scalable electrical devices,” says Movileanu, an experimentalist who earned a Ph.D. from the University of Bucharest (Romania).

Looking ahead, his team plans to tether specific protein receptors to nanopores in complex biofluid samples, such as blood, a cell lysate or a biopsy. Movileanu is excited about this work because each protein receptor-protein target interaction produces a unique electrical signal.

Moreover, the biological data gleaned from a single sample can be immense. “Nanostructures permit us to observe complex biochemical events in a quantitative manner, leading to a solid assessment about a particular sample,” he adds.

Movileanu applauds NIH’s commitment to new biomedical technologies, enabling doctors to identify diseases quicker, more accurately and more affordably than before.

“This could be the start of a new generation of research and diagnostic tools, exploring the molecular basis of recognition events in a sensitive, specific and quantitative fashion—something heretofore impossible with traditional spectroscopic and calorimetric measurements,” he continues.

NIGMS is the principal medical research agency of the U.S. government. One of NIH’s 27 centers and institutes, NIGMS supports basic research into biological processes and lays the foundation for advances in disease diagnosis, treatment and prevention. NIGMS-funded scientists investigate how living systems work at a range of levels, from molecules and cells to tissues and organs, in research organisms, humans and populations.

  • Author

Rob Enslin

  • Recent
  • 鶹ƵUniversity Libraries’ Information Literacy Scholars Produce Information Literacy Collab Journal
    Thursday, May 29, 2025, By Cristina Hatem
  • Trip to Atlanta Gives Falk Students ‘Real-World’ Opportunities and Connections
    Thursday, May 29, 2025, By Matt Michael
  • 鶹ƵPride on Display: Limited-Edition Poster Supports Future Generations
    Thursday, May 29, 2025, By News Staff
  • Maxwell Advisory Board Welcomes New Leadership
    Thursday, May 29, 2025, By Jessica Youngman
  • 鶹ƵStage Hosts Inaugural Julie Lutz New Play Festival
    Wednesday, May 28, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.