鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Discovery Improves Heat Transfer in Boiling

Tuesday, December 13, 2016, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and CreativeSTEM

While the average person associates boiling with cooking dinner, the process is also widely used to transfer heat across surfaces. It is used in refrigerators, in industrial boilers and even on the international space station to reject heat from its systems into outer space. In fact, around 90 percent of electricity in the United States is generated by steam turbines, which require boilers. More efficient boiling can result in significant energy and cost savings. That’s why researchers continue to study the process.

Boiling water

Boiling water

in the has discovered a new way to improve the efficiency of boiling heat transfer. Featured in a recent publication of , Maroo’s research enhances the critical heat flux­­ (CHF)—the maximum practical heat transfer in boiling.

“Even though boiling has been studied for over 50 years, we have introduced and validated a new mechanism to increase boiling heat transfer,” says Maroo.

The new mechanism developed by Maroo and former Ph.D. student An Zou ’15 is based on early-evaporation of the microlayer, which is a thin liquid film present at the base of a bubble. Microridges on the surface partition the microlayer and disconnect it from bulk liquid, causing it to evaporate sooner, thus leading to increase in bubble growth rate, departure frequency and CHF. Compared to a plain surface, there is a ~120 percent enhancement in CHF with only an ~18 percent increase in surface area—the highest such enhancement reported in literature. Prior to Maroo’s discovery, researchers enhanced CHF by modifying the surface where the heat transfer takes place by increasing nucleation site density, improving surface wettability or wicking effect, separating pathways for liquid and vapor flows, and increasing surface roughness.

Maroo’s discovery will allow coupling of the new mechanism with existing mechanisms to further push the limits of boiling heat transfer, enable the design of micro and nanostructures to achieve desired transfer of heat with boiling, and advance the next-generation technology of thermal management of electronics.

  • Author

Matt Wheeler

  • Recent
  • Newhouse Creative Advertising Students Win Big at Sports and Entertainment Clios
    Friday, May 30, 2025, By News Staff
  • 鶹ƵUniversity Libraries’ Information Literacy Scholars Produce Information Literacy Collab Journal
    Thursday, May 29, 2025, By Cristina Hatem
  • 鶹ƵSpirit on Display: Limited-Edition Poster Supports Future Generations
    Thursday, May 29, 2025, By News Staff
  • Timur Hammond’s ‘Placing Islam’ Receives Journal’s Honorable Mention
    Tuesday, May 27, 2025, By News Staff
  • 鶹ƵUniversity, Lockerbie Academy Reimagine Partnership, Strengthen Bond
    Friday, May 23, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.