鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Researchers to Develop a New Category of Biomaterials

Thursday, September 1, 2016, By Matt Wheeler
Share

Most people know someone with a hip or knee implant. These artificial joints are made up of metals and polymers known as biomaterials, which are essentially materials that can be safely introduced into the human body. Biomaterials can also help us understand how healthy or diseased cells and tissues work, and how cells and tissues respond when they come into contact with them. Certain biomaterials are designed to be “smart”—altering their stiffness or surface in response to triggers like exposure to water or light. Others can even control cells and tissues to encourage healing.

polymer

A polymer

In a new research project funded by the National Science Foundation’s biomaterials program, the ‘s Associate Professor , Assistant Professor and Bucknell’s will create a new category of biomaterials. These new biomaterials will not only have specific properties that cells and tissues respond to, but will also be “smart” and capable of responding to the presence of the cells and tissues. By studying the back-and-forth interaction between the material and the cells and tissues, the team will develop a new understanding of how cells and tissues work and how materials can be used to control them.

Henderson says, “Stimuli responsive biomaterials have been developed to assay or control biological systems, but the potential of these biomaterials may be largely untapped. Integrating stimuli responsive biomaterials with biological systems to create hybrid feedback systems will provide new insight into phenomena at the interface of synthetic and living systems.”

Henderson, Hosein, Mather, and their teams of student researchers will create these new stimuli responsive shape-memory polymers and study them in innovative synthetic/living feedback systems with three main objectives—to tune cytocompatible shape-memory polymers for photo-thermal stimulation; to develop and understand enzyme-responsive shape-memory polymers; and to study synthetic and living feedback systems. This work will lead to novel material designs and enable the discovery of new material phenomena.

In addition to funding an advance in the biomedical field, the team’s NSF grant will continue and expand a yearly two-day workshop to train Central New York STEM teachers in “Making Smart Materials.”

  • Author

Matt Wheeler

  • Recent
  • Newhouse Creative Advertising Students Win Big at Sports and Entertainment Clios
    Friday, May 30, 2025, By News Staff
  • 鶹ƵUniversity Libraries’ Information Literacy Scholars Produce Information Literacy Collab Journal
    Thursday, May 29, 2025, By Cristina Hatem
  • 鶹ƵSpirit on Display: Limited-Edition Poster Supports Future Generations
    Thursday, May 29, 2025, By News Staff
  • Timur Hammond’s ‘Placing Islam’ Receives Journal’s Honorable Mention
    Tuesday, May 27, 2025, By News Staff
  • 鶹ƵUniversity, Lockerbie Academy Reimagine Partnership, Strengthen Bond
    Friday, May 23, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.