鶹Ƶ

Skip to main content
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • 鶹ƵUniversity Impact
  • |
  • The Peel
  • Home
  • 鶹Ƶ
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Better Cancer Treatment Through Nanotechnology

Wednesday, September 2, 2015, By Matt Wheeler
Share
Research and Creative

Assistant Professor Shikha Nangia in the is collaborating with Assistant Professor Juntao Luo of Upstate Medical University to develop a way to deliver cancer-fighting drugs more effectively using nanoparticles. The National Institutes of Health has funded their efforts, awarding Upstate a two-year grant for the proposal titled “Rational Design and High Throughput Synthesis of Nanocarriers for Efficient Drug Delivery.”

A view inside a nanocarrier with anticancer drug (orange) in its core

A view inside a nanocarrier with anticancer drug (orange) in its core

In chemotherapy, cancer-fighting drugs are often given to patients through an intravenous injection. Once injected, they spread throughout the body and damage healthy cells along with the cancerous cells, causing many side effects. One way to prevent the drugs from attacking healthy cells and target cancer more specifically is to encapsulate them in some kind of a carrier that takes the drug as its cargo and delivers it to cancerous tumors. Inside the tumor, the carriers break down, releasing the drug and killing the cancerous cells. This happens at one-billionth of a meter, at the nanoscale—hence the term “nanocarrier.”

To design an efficient nanocarrier is no trivial task, and to design a nanocarrier based on the drug structure is even more challenging. Cancer patients are currently given DOXIL, a nanocarrier that releases the drug quite slowly. The novel nanocarriers developed in this study have a well-controlled drug release profile and show much better efficacy than DOXIL in cancer treatment in animal models.

Nangia adds, “With this work, Dr. Luo has found the nanocarriers are stable in the blood stream and they release the drug more efficiently. It’s going make chemotherapy more effective for cancer patients.”

Luo’s lab designs and synthesizes the nanocarrier particles, loads them with the drugs and tests them on mice. Nangia’s lab handles the computational end of things, simulating nanocarrier formation and drug interactions that in turn help the design of even better nanocarriers for efficient drug loading.

When Nangia and Luo have perfected their work, their nanocarriers will go through the process of clinical trials and additional research. Eventually, cancer patients should benefit from this work through better treatment of their disease and an improved rate of recovery.

  • Author

Matt Wheeler

  • Recent
  • Japan’s Crackdown on ‘Shiny’ Names Sparks Cultural Reflection
    Tuesday, June 3, 2025, By Keith Kobland
  • The Milton Legacy: Romance, Success and Giving Back
    Monday, June 2, 2025, By Eileen Korey
  • Five Tips to Protect Your Health and Prepare for Worsening Air Conditions
    Monday, June 2, 2025, By Daryl Lovell
  • Newhouse Professor Robert Thompson Featured on ‘NBC Nightly News’ for Pop Culture Lecture Series
    Monday, June 2, 2025, By Keith Kobland
  • Newhouse Creative Advertising Students Win Big at Sports and Entertainment Clios
    Friday, May 30, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

For the Media

Find an Expert
© 2025 鶹ƵUniversity News. All Rights Reserved.